Vocational Skills Course

CCS 517 - Commercial and Green Synthesis

(Credit-2)

UNIT I: Disconnection Approach

Introduction to synthons and synthetic equivalents, disconnection approach (basic concept only), functional group inter-conversions and importance of the order of events in organic synthesis. One group C-X and C-C along with two group C-X disconnections (case studies of representative molecules are required). Reactivity umpolung and importance of functional group protection in organic synthesis. Principle of protection of alcohol, amine, carbonyl and carboxyl groups.

UNIT II Green Chemistry

What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry, Twelve principles of Green Chemistry, solvent-free organic reactions. Green solvents– water, super critical fluids as a solvent for organic reactions, ionic liquids. Energy requirements for reactions – alternative sources of energy: use of microwaves and ultrasonic energy.

CCS 518: Nanoscience

Credit-2

UNIT I:

Properties of Nanomaterials :Introduction: Properties of materials & nanomaterials, role of size and shape in nanomaterials.

Electronic Properties: Classification of materials: Metal, Semiconductor, Insulator, Band structures, Brillouin zones, Mobility, Resistivity.

Magnetic Properties: Superparamagnetism, blocking. Important properties in relation to nanomagnetism.

Optical Properties: Photoconductivity, Optical absorption & transmission, Photoluminescence, Fluorescence, Phosphorescence, Electroluminescence. Thermal Properties and Mechanical Properties;

UNIT II:

Synthesis of Nanomaterials :

Chemical Methods: Metal nanocrystals by reduction, Solvothermal synthesis, Photochemical synthesis, Electrochemical synthesis, Nanocrystals of semiconductors and other materials by arrested precipitation, Thermolysis routes, Sonochemical routes, Post-synthetic size-selective processing. Sol-gel, Micelles and microemulsions.

Biological Methods of Synthesis: Use of bacteria, fungi, Actinomycetes for nanoparticles synthesis, Magnetotactic bacteria for natural synthesis of magnetic nanoparticles; Mechanismof formation; Viruses as components for the formation of nanostructured materials; Synthesisprocess and application, Role of plants in nanoparticle synthesis.